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Abstract

We study the individual behavior of the eigenvalues of the laplacian matrices of
the cyclic graph of order n, where one edge has weight α ∈ C, with Re(α) < 0,
and all the others have weights 1. This paper is a sequel of a previous one where
we considered Re(α) ∈ [0, 1] (Eigenvalues of laplacian matrices of the cycles with one
weighted edge, Linear Algebra Appl. 653, 2022, 86–115). We prove that for Re(α) < 0
and n > Re(α− 1)/Re(α), one eigenvalue is negative while the others belong to [0, 4]
and are distributed as the function x 7→ 4 sin2(x/2). Additionally, we prove that as n
tends to ∞, the outlier eigenvalue converges exponentially to 4Re(α)2/(2Re(α)− 1).
We give exact formulas for the half of the inner eigenvalues, while for the others we
justify the convergence of Newton’s method and fixed-point iteration method. We find
asymptotic expansions, as n tends to ∞, both for the eigenvalues belonging to [0, 4]
and the outlier. We also compute the eigenvectors and their norms.
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1 Introduction

For every natural n ≥ 3 and every α in C, we consider the n×n complex laplacian matrix
Lα,n with the following structure:

Lα,8 =



1 + α −1 0 0 0 0 0 −α
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1

−α 0 0 0 0 0 −1 1 + α


.

If α is real, Lα,n is the laplacian matrix of Gα,n, where Gα,n is the cyclic graph of order n,
where the edge between the vertices 1 and n has weight α, and all other edges have weight
1. See Figure 1 for n = 8. The eigenvalues and eigenvectors of Lα,n are important to solve
the heat and wave equations on Gα,n. See [14] for general theory on laplacian matrices.

1

2

3

4

5

6

7

8

1

11

1

1

1 1

α

Figure 1: Graph Gα,8

Matrices Lα,n can be considered as tridiagonal Toeplitz matrices with perturbations in
the corners (1, 1), (1, n), (n, 1) and (n, n). Several investigations in this area and some of its
applications have been recently developed, see for example [2–4,6,7,10,12,13,15,16,20–22].
These matrices can also be considered as periodic Jacobi matrices.

The present paper is a continuation of [11]. There we proved that for every α in C
the characteristic polynomial of Lα,n, defined by Dα,n(λ) := det(λI − Lα,n), equals the
characteristic polynomial DRe(α),n of LRe(α),n. This implies that the eigenvalues of Lα,n

only depend on Re(α). For this reason, we are going to consider α as a real number. For
α in R, these matrices are real and symmetric, their eigenvalues are real, we enumerate
them as follows:

λα,n,1 ≤ λα,n,2 ≤ . . . ≤ λα,n,n.
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It is a very well-known fact that the eigenvalues of the n× n tridiagonal Toeplitz matrix,
with values −1, 2,−1 in the non-zero diagonals, are asymptotically distributed as the
values of

g(x) := 4 sin2(x/2) (x ∈ [0, π]). (1.1)

on [0, π] as n→ ∞. By the Cauchy interlacing theorem [19, Theorem 4.2], it follows that
the eigenvalues of Lα,n are also asymptotically distributed by g on [0, π], as n tends to
infinity. This is also a very simple application of the theory of generalized locally Toeplitz
sequences [9].

In [11], we studied the individual behavior of the eigenvalues of the matrices Lα,n

for α in (0, 1). In that case, the eigenvalues of Lα,n belonged to [0, 4]. We solved the
characteristic equation by numerical methods and derived asymptotic formulas for all
eigenvalues.

Now we consider α < 0. This means that the interaction between the vertices 1 and
n has a negative coefficient, while the interactions between vertices 1 and 2, 2 and 3, . . . ,
and n− 1 and n, have the same positive coefficient. We do not have physical examples of
this situation.

If n > (α− 1)/α, then only one eigenvalue of Lα,n is negative while the others belong
to the interval [0, 4] and behave as in the case 0 < α < 1, considered in [11].

Commonly, the spectral analysis ignores the eigenvalues outside the clusters. In this
paper, we focus our attention on these eigenvalues, so we introduce the next definitions.
The phrase “number of eigenvalues” assumes counting the eigenvalues with their algebraic
multiplicities.

Definition 1.1. Let N ∈ N and (An)n≥N be a matrix sequence where An is a n×n matrix
for every n. Suppose that Ω ∈ C. We say that Ω is an outlier adherent point for (An)n≥N

if for every sufficiently small ε > 0 the number of the eigenvalues of An belonging to the
ε-neighborhood of Ω is strictly positive and behaves as o(n) as n→ ∞.

We do not define the concept of outlier eigenvalue for an individual matrix; we speak
about outlier eigenvalues for a matrix Am in the context of a matrix sequence (An)n≥N .

Definition 1.2. Let N ∈ N and (An)n≥N be a matrix sequence where An is a n × n
matrix for every n. Assume that m ≥ N and λ be an eigenvalue of Am. We say that λ is
an outlier eigenvalue for Am with respect to (An)n≥N if there exists ε > 0 such that the
number of the eigenvalues of An belonging to the ε-neighborhood of λ behaves as o(n) as
n→ ∞.

Figuratively speaking, Definition 1.2 means that λ is an eigenvalue of Am and there
are not many eigenvalues of An near λ, when n is sufficiently large.

Obviously, if Ω is an outlier adherent point for (An)n≥N , then there exist ε > 0 and
M ∈ N such that for every m ≥M the eigenvalues of Am belonging to the ε-neighborhood
are outlier eigenvalues.
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The principal novelty of this paper is a thorough analysis of the asymptotic behavior
of the outlier eigenvalues for the specific matrix family. In particular, we prove that
the sequence of outlier eigenvalues converges exponentially to the outlier cluster point
Ωα := 4α2/(2α − 1), as n → ∞. The outlier eigenvalues naturally appear in the study of
some structured matrices (see [9, Example 10.7], [8]), but we have not found examples of
their detailed analysis in the literature, except for [12], where the asymptotic formula is
less precise.

The main results of this paper are stated in Sections 2. The corresponding proofs are
in Sections 3–6. We represent the characteristic polynomial in the convenient form and
show the localization of the eigenvalues (Section 3), the asymptotic behavior of the inner
eigenvalues and their computation with the Newton method (Section 4), the asymptotic
behavior of the outlier eigenvalue (Sections 5), and calculate the norms of the eigenvectors
(Section 6). In Section 7 we show some numerical experiments.

In comparison to works of other authors, we deal with a rather special matrix family,
but this matrix family is not trivial (the eigenvalues and eigenvectors are not given by
simple direct formulas), and our results on the eigenvalues and eigenvectors for this family
are very complete.

Remark 1.3. The case α > 1 (when Gα,n has one “overweighted” edge) is slightly more
complicated, and we are going to study it in another paper. If α > 1 and n > α/(α− 1),
then one eigenvalue of Lα,n is greater than 4 and the others are in [0, 4]. In that case,
as n tends to infinity, the maximal eigenvalue λα,n,n converges exponentially to Ωα =
4α2/(2α− 1) > 4. For α > 1, the situation essentially depends on the parity of n: if n is
even, then λα,n,n < Ωα, and if n is odd, then λα,n,n > Ωα.

2 Main results

Define

κα :=
α− 1

α
, i.e., κα =

|α|+ 1

|α| , (2.1)

Ωα :=
4α2

2α− 1
, i.e., Ωα = − 4

κ2
α − 1

. (2.2)

Since α < 0, κα > 1 and Ωα < 0. For every j in {1, . . . , n}, we put

dn,j :=
(j − 1)π

n
.

Theorem 2.1 (eigenvalues’ localization). Let n ≥ 3.

1) If n < κα, then λα,n,1 = 0 and 0 < λα,n,2 < g(dn,2).

2) If n = κα, then λα,n,1 = λα,n,2 = 0.
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3) If n > κα, then Ωα < λα,n,1 < 0 and λα,n,2 = 0.

Furthermore, for every j with 3 ≤ j ≤ n,

λα,n,j = g(dn,j) (j is odd),

g(dn,j−1) < λα,n,j < g(dn,j) (j is even).

Theorem 2.1 implies that λα,n,j with odd j does not depend on α.
Theorem 2.1 provides another proof of the fact that the eigenvalues of Lα,n are asymp-

totically distributed as the function g on [0, π].
Motivated by Theorem 2.1 we use g defined by (1.1) as a change of variable in the

characteristic equation when λα,n,j ∈ [0, 4] and set

zα,n,j := g̃−1(λα,n,j),

where g̃ : [0, π] → [0, 4] is a restriction of g.
Define g− : [0,∞) → (−∞, 0] by

g−(x) := 2− 2 cosh(x) = −4 sinh2
x

2
. (2.3)

Define
Nα := max{3, ⌊κα⌋+ 1}. (2.4)

If n ≥ Nα, we use (2.3) as a change of variable and put

sα,n := g−1
− (λα,n,1).

In Figure 2 we have glued together g and reflected g− into one spline.
After applying the changes of variables g or g−, the characteristic equation transforms

to certain equations for zα,n,j or sα,n, respectively. Those equations, stated in the forth-
coming Theorem 2.2, will be written in terms of the following functions ηα and φα,n. We
define ηα : [0, π] → R by

ηα(x) := 2 arctan
(
κα tan

x

2

)
− π = −2 arctan

(
κ−1
α cot

x

2

)
. (2.5)

This function strictly increases and takes values in [−π, 0]. Define φα,n : [0,∞) → R by

φα,n(x) := 2 arctanh
(
κ−1
α tanh

nx

2

)
. (2.6)

This function strictly increases on [0,∞) and takes values from 0 to

ωα := log(1− 2α). (2.7)

Notice that g−(ωα) = Ωα and tanh(ωα/2) = κ−1
α .
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Figure 2: Plot of g (blue), plot of x 7→ g−(−x) (green), points zα,n,j and sα,n, and the
corresponding values of λα,n,j , for α = −1/2 and n = 8. The red labels on the horizontal
axis are jπ/n.

Theorem 2.2 (main equations). Let n ≥ Nα. Then sα,n is the unique solution on (0, ωα)
of the equation

x = φα,n(x). (2.8)

For every even j with 4 ≤ j ≤ n, the number zα,n,j is the unique solution on [0, π] of the
equation

x = dn,j +
ηα(x)

n
. (2.9)

For n ≥ Nα, the main equations from Theorem 2.2 can be solved by the fixed point
method and Newton’s method, see details in Theorems 4.2, 4.4, 5.2, 5.4. For n < Nα, we
only guarantee the convergence of the bisection method, see Remark 4.5.

Using equations from Theorem 2.2 we derive asymptotic expansions for λα,n,j as
n → ∞. The expansion of λα,n,1 is drastically different from the expansion of the in-
ner eigenvalues. Therefore, we state the corresponding results in two separate theorems.

We define Λα,n : [0, π] → R by

Λα,n(x) := g(x) +
g′(x)ηα(x)

n
+
g′(x)ηα(x)η

′
α(x) +

1
2g

′′(x)ηα(x)
2

n2
.

For all even j with 2 ≤ j ≤ n, we define λasympt
α,n,j by

λasympt
α,n,j := Λα,n(dn,j). (2.10)
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Theorem 2.3 (asymptotic expansion of inner eigenvalues). There exists C1(α) > 0 such
that for every n ≥ Nα,

max
4≤j≤n
j even

∣∣∣λα,n,j − λasympt
α,n,j

∣∣∣ ≤ C1(α)

n3
. (2.11)

To state the asymptotic formula for λα,n,1, we introduce the following numbers:

βα,1 :=
16α2(α− 1)2

(1− 2α)2
, βα,2 :=

64α3(α− 1)3

(1− 2α)3
, βα,3 :=

32α2(1− α)2(2α2 − 2α+ 1)

(1− 2α)3
.

(2.12)
Equivalently,

βα,1 =
16κ2

α

(κ2
α − 1)2

, βα,2 =
64κ3

α

(κ2
α − 1)3

, βα,3 =
32κ2

α(κ2
α + 1)

(κ2
α − 1)3

. (2.13)

We define λasympt
α,n,1 by

λasympt
α,n,1 := Ωα + βα,1e

−nωα + βα,2ne
−2nωα − βα,3e

−2nωα . (2.14)

Theorem 2.4 (asymptotic expansion of the first eigenvalue). As n → ∞, the extreme
eigenvalue λα,n,1 of Lα,n converges exponentially to Ωα. More precisely, there exists
C2(α) > 0 such that for every n ≥ Nα,∣∣∣λα,n,1 − λasympt

α,n,1

∣∣∣ ≤ C2(α)n
2e−3nωα . (2.15)

Since e−ωα = 1/(1 + 2|α|), the expression e−nωα can be written as 1/(1 + 2|α|)n.
So, if α < 0 and n is large enough, the minimal eigenvalue goes out of [0, 4] and

converges rapidly to the negative number Ωα, and the situation with the other eigenvalues
is similar to the case 0 < α < 1, but there is no eigenvalue in the interval (0, g(2π/n)).
The “left spectral gap” equals λα,n,2−λα,n,1 = |λα,n,1| and converges exponentially to |Ωα|
as n goes to infinity.

In particular, we conclude that Definitions 1.1 and 1.2 make sense for our matrix
sequence: Ωα is an outlier adherent point for (Lα,n)n≥3, and λα,n,1 for n ≥ Nα is an
outlier eigenvalue for Lα,n.

Finally, we focus our attention on the eigenvectors. In general, for complex values of
α, the eigenvectors depend on α, not only on Re(α).

Theorem 2.5 (eigenvectors for Re(α) < 0). Let α ∈ C with Re(α) < 0 and n ≥ NRe(α).
Then Lα,n has the following eigenvectors.

1. [1, . . . , 1]⊤ is an eigenvector associated to the eigenvalue λα,n,2 = 0.

2. For every j, 3 ≤ j ≤ n, the vector vα,n,j = [vα,n,j,k]
n
k=1 with the following components

is an eigenvector associated to λα,n,j:

vα,n,j,k := sin(kzα,n,j)− (1− α) sin((k − 1)zα,n,j) + α sin((n− k)zα,n,j). (2.16)
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3. The vector vα,n,1 = [vα,n,1,k]
n
k=1 with the following components is an eigenvector

associated to λα,n,1:

vα,n,1,k := sinh(ksα,n)− (1− α) sinh((k − 1)sα,n) + α sinh((n− k)sα,n). (2.17)

If n < κRe(α), then [1, . . . , 1]⊤ is an eigenvector associated to λα,n,1 = 0, and the
components of an eigenvector associated to λα,n,2 can be computed by (2.16).

If α < 0 and n = κα (i.e., α = −1/(n− 1)), then the eigenvalue 0 has two orthogonal
eigenvectors: [1, . . . , 1]⊤ and [−(n− 1),−(n− 3), . . . , n− 3, n− 1]⊤.

To approximate the norms of the eigenvectors, we define

να(x) :=
1− Re(α)

2
g(x)−Re(α)

2
g(ηRe(α)(x))+

Re(α)− |α|2
2

g(x−ηRe(α)(x))+2|α|2, (2.18)

µα :=
|α|

2
√

2(Re(α)2 − Re(α))
. (2.19)

Theorem 2.6 (norms of eigenvectors for Re(α) < 0). Let α ∈ C with Re(α) < 0 and
n ≥ NRe(α).

1. If j ≥ 3 is odd, then

∥vα,n,j∥2 = |1− α|
√
n

2
λα,n,j . (2.20)

2. If j ≥ 4 is even, then

∥vα,n,j∥2 =
√
να(dn,j)n+Oα

(
1√
n

)
, (2.21)

with Oα

(
1√
n

)
uniformly on j.

3. As n→ ∞,

∥vα,n,1∥2 = µα e
nωα +O(n) = µα(1− 2Re(α))n +O(n). (2.22)

In Propositions 6.1 and 6.2 we state exact formulas for the eigenvectors, but they are
more complicated.

3 The characteristic polynomial and eigenvalues’ localiza-
tion

In this section, we repeat some formulas for Dα,n(λ) := det(λI − Lα,n) established in [11]
and prove Theorem 2.1. Propositions 3.1, 3.2 and Lemmas 3.3, 3.4 were proved in [11,
Section 4]. Proposition 3.1 also follows from [5, Corollary 2.4].
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For everym in {0}∪N, we denote by Tm and Um themth degree Chebyshev polynomials
of the first and second kind, respectively. They are determined by the following properties:

Tm

(
t+ t−1

2

)
=
tm + t−m

2
, Um

(
t+ t−1

2

)
=
tm+1 − t−m−1

t− t−1
. (3.1)

Proposition 3.1 (characteristic polynomial of Lα,n for complex α). For n ≥ 3 and α ∈ C,

Dα,n(λ) = (λ− 2Re(α))Un−1

(
λ− 2

2

)
− 2Re(α)Un−2

(
λ− 2

2

)
+ 2(−1)n+1Re(α).

In the rest of the section, we suppose that α < 0.

Proposition 3.2. For n ≥ 3,

Dα,n(4− t2) = 2(−1)n
pn(t)qα,n(t)

t
, (3.2)

where

pn(t) = (t2 − 4)Un−1

(
t

2

)
, qα,n(t) = (1− α)Tn

(
t

2

)
+ α

t

2
Un−1

(
t

2

)
. (3.3)

The polynomials (3.3) after the change of variable t = 2 cos(x/2) read as

pn(2 cos(x/2)) = −4 sin
x

2
sin

nx

2
, qα,n(2 cos(x/2)) = (1− α) cos

nx

2
+ α cos

x

2

sin nx
2

sin x
2

.

Taking into account that g(x) = 4− (2 cos(x/2))2,

Dα,n(g(x)) = (−1)n+1 4 sin
x
2 sin

nx
2

cos x
2

(
(1− α) cos

nx

2
+ α cos

x

2

sin nx
2

sin x
2

)
. (3.4)

Analogously, after the change of variable t = 2 cosh(x/2), (3.2) transforms to

Dα,n(g−(x)) = (−1)n
4 sinh x

2 sinh
nx
2

cosh x
2

(
(1− α) cosh

nx

2
+ α cosh

x

2

sinh nx
2

sinh x
2

)
. (3.5)

Lemma 3.3. For every j with 1 ≤ j ≤ n− 1,

qα,n

(
2 cos

jπ

2n

)
=

{
(−1)

j
2 (1− α), if j is even,

(−1)
j−1
2 α cot jπ

2n , if j is odd.

Moreover,

qα,n(0) =

{
0, if n is odd,

(−1)
n
2 (1− α), if n is even,

qα,n(2) = (1− α) + αn.
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Lemma 3.4. If n is odd, then

lim
t→0+

2qα,n(t)

t
= (−1)

n−1
2

(
α+ (1− α)n

)
,

and if n is even, then

lim
t→0+

2pn(t)

t
= 4(−1)

n
2 n.

Proposition 3.5 (trivial eigenvalues of Lα,n). For every n ≥ 3 and every even j with
0 ≤ j ≤ n− 1, the number g(jπ/n) is an eigenvalue of Lα,n.

Proof. Follows from (3.3) or (3.4).

For every j with 1 ≤ j ≤ n, we define

In,j :=

(
(j − 2)π

n
,
(j − 1)π

n

)
= (dn,j−1, dn,j).

Proof of Theorem 2.1. From Lemmas 3.3 and 3.4 we obtain the following facts.

1. If n < (α− 1)/α, then qα,n(2 cos(x/2)) changes its sign in the interval In,2.
2. If n = (α− 1)/α, then qα,n(2) = 0.
3. If n > (α − 1)/α, then qα,n(t) changes its sign in the interval (2, rα + r−1

α ) where
rα :=

√
1− 2α. Indeed, by (3.1) and the equalities 1−α = (1+r2α)/2, α = (1−r2α)/2

it follows that

qα,n

(
rα +

1

rα

)
=

1

2
(1 + r2α)r

−n
α > 0.

Lemma 3.3 and assumption n > κα imply that qα,n(2) < 0. Finally, a simple
computation shows that

Ωα = 4− (rα + r−1
α )2.

Hence, we obtain the statements of the theorem about λα,n,1 and λα,n,2. For the rest of
the eigenvalues, the proof is similar to the proof of [11, Theorem 1]. In particular, for odd
j, we use Proposition 3.5.

4 Inner eigenvalues

In this section, we suppose that α < 0. If λ ∈ (0, 4), we use the change of variable
λ = g(x), with x ∈ (0, π), in (3.2). Then, Dα,n(g(x)) = 0 reduces to qα,n(2 cos(x/2)) = 0,
which is equivalent to

tan
nx

2
= κα tan

x

2
.

In particular, for even j with 4 ≤ j ≤ n, the solution zα,n,j belonging to In,j satisfies (2.9).
Thereby we obtain the second part of Theorem 2.2.
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Figure 3: Plot of ηα (blue) and the left-hand side of (4.1) (green) for α = −1/2, n = 8
(left) and α = −3, n = 9 (right).

Equation (2.9) from Theorem 2.2 can be rewritten in the form

nx− (j − 1)π = ηα(x). (4.1)

Figure 3 shows ηα and the left-hand side of (4.1) for a couple of examples.
Proposition 4.1 and Theorem 4.2 follow directly from the properties of ηα, similarly

to [11, Propositions 21 and 22]. The first two derivatives of ηα are

η′α(x) =
κα

(
1 + tan2 x

2

)
1 + κ2

α tan
2 x

2

=
1

κα
+

κ2
α − 1

κα

(
1 + κ2

α tan
2 x

2

) , (4.2)

η′′α(x) = −κα

(
κ2
α − 1

) (
1 + tan2 x

2

)
tan x

2(
1 + κ2

α tan
2 x

2

)2 . (4.3)

Proposition 4.1. Each derivative of ηα is a bounded function on (0, π). In particular,

sup
0<x<π

|η′α(x)| = κα, sup
0<x<π

|η′′α(x)| ≤
κ2
α − 1

2
.

Theorem 4.2. Let n ≥ Nα, j be even, 4 ≤ j ≤ n. Then the function x 7→ dj + ηα(x)/n
is a contraction on cl(In,j), and its fixed point is zα,n,j.

Due to Theorem 4.2, zα,n,j can be computed by the simple iteration method. Figure 4
shows the functions from Theorem 4.2 for a couple of examples.

In the upcoming Proposition 4.3 we recall some sufficient conditions for the convergence
of Newton’s method for convex functions and provide an upper bound for the linear
convergence. The corresponding proofs appear in [11], or in [18, Section 22, Problem
14] and [1, Theorem 2.2].
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Figure 4: Plots of the functions from Theorem 4.2 and their fixed points, for α = −1/2,
n = 8 (left) and α = −3, n = 9 (right).

Proposition 4.3. Let a, b ∈ R with a < b, F is differentiable and F ′ > 0 on [a, b], F is
convex on [a, b], c ∈ [a, b], F (c) = 0, y(0) ∈ [c, b]. Define the sequence (y(m))∞m=0 by the
recurrence relation

y(m+1) = y(m) − F
(
y(m)

)
F ′
(
y(m)

) .
Then y(m) belongs to [c, b] for every m ≥ 0, the sequence (y(m))∞m=0 decreases and converges
to c, with

y(m) − c ≤ (b− a)

(
1− F ′(a)

F ′(b)

)m

.

For every n ≥ 4 and every even j with 4 ≤ j ≤ n, we define hα,n,j : cl(In,j) → R by

hα,n,j(x) := nx− (j − 1)π − ηα(x).

Recall that Nα is defined by (2.4).

Theorem 4.4 (convergence of Newton’s method). Let n ≥ Nα, j be even, 4 ≤ j ≤ n and

y
(0)
α,n,j = dn,j. Define the sequence (y

(m)
α,n,j)

∞
m=0 by the recursive formula

y
(m)
α,n,j := y

(m−1)
α,n,j −

hα,n,j

(
y
(m−1)
α,n,j

)
h′α,n,j

(
y
(m−1)
α,n,j

) (m ≥ 1). (4.4)

Then (y
(m)
α,n,j)

∞
m=0 is well defined and converges to zα,n,j, and the convergence is at least

linear:

y
(m)
α,n,j − zα,n,j ≤

π

n

(
κ2
α − 1

καn− 1

)m

. (4.5)
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Moreover, if n ≥ 2Nα, then the convergence is quadratic, and

y
(m)
α,n,j − zα,n,j ≤

π

n

(
πκ2

α

2n2

)2m−1

. (4.6)

Proof. Formulas for η′α and η′′α ((4.2) and (4.3)) imply that h′α,n,j > 0 and h′′α,n,j > 0 on

cl(In,j). Moreover, dn,j−1 < zα,n,j < y
(0)
α,n,j = dn,j . So, the assumptions of Proposition 4.3

are satisfied. Here are rough estimates of the derivatives of hα,n,j at the extremes of In,j :

n− κα = h′α,n,j(0) ≤ h′α,n,j(dn,j−1) ≤ h′α,n,j(dn,j) ≤ h′α,n,j(π) = n− 1

κα
.

Therefore,

1−
h′α,n,j(dn,j−1)

h′α,n,j(dn,j)
≤ 1−

h′α,n,j(0)

h′α,n,j(π)
=

κ2
α − 1

καn− 1
,

and we obtain (4.5).
Finally, if n ≥ 2Nα, then

π

n
·

max
0≤x≤π

|h′′α,n,j(x)|

2 min
0≤x≤π

|h′α,n,j(x)|
≤

π max
0≤x≤π

|η′′α(x)|

2n

(
n− max

0≤x≤π
|η′α(x)|

) ≤ π(κ2
α − 1)

4n(n− κα)
≤ πκ2

α

2n2
< 1,

which implies the quadratic convergence with upper estimate (4.6); see, e.g., [1, Section 2.2]
or [11, Proposition 26].

The initial condition y
(0)
α,n,j = dn,j assures that we start from the correct side of the

root. Otherwise, the rule (4.4) can yield a point greater than (j − 1)π/n or even than π.

For m large enough, y
(m)
α,n,j approaches to zα,n,j , and the convergence in Theorem 4.4

becomes quadratic, according to the general theory of Newton’s method.

Remark 4.5. For −1
2 < α < 0, we have that κα > 3. Let us explain the situation with

the eigenvalues for 3 ≤ n ≤ κα.

• For every even j with 2 ≤ j ≤ n (except for n = κα and j = 2), zα,n,j satisfies
equation hα,n,j(x) = 0 and can be computed by the bisection method.

• Since ∥η′α∥∞/n ≥ 1, we cannot guarantee the convergence of fixed point method for
all j.

• h′α,n,j(x) can vanish for some j and x, and we cannot guarantee the convergence of
Newton’s method.

13



Now we pass to the asymptotic analysis of the eigenvalues λα,n,j with even j such that
4 ≤ j ≤ n, as n→ ∞.

By Theorem 2.2, for every n ≥ Nα, and every even j with 4 ≤ j ≤ n,

|zα,n,j − dn,j | ≤
π

n
.

The proofs of the next Propositions 4.6 and 4.7 are very similar to the proofs given
in [11, Propositions 29 and 30].

Proposition 4.6. Let n ≥ Nα and j be even with 4 ≤ j ≤ n. Then∣∣∣∣zα,n,j − (dn,j + ηα(dn,j)

n

)∣∣∣∣ ≤ πκα

n2
. (4.7)

Proposition 4.7. There exists C3(α) > 0 such that for every n ≥ Nα and every even j
with 4 ≤ j ≤ n,

zα,n,j = dn,j +
ηα(dn,j)

n
+
ηα(dn,j)η

′
α(dn,j)

n2
+ rα,n,j , (4.8)

where |rα,n,j | ≤ C3(α)
n3 .

Proof of Theorem 2.3. Substituting (4.8) into g and using Taylor expansion of g around
dn,j , we obtain the asymptotic expansion (2.10) with error bound (2.11).

5 First eigenvalue

In this section, we suppose that α < 0 and n ≥ Nα, and we analyze the behavior of λα,n,1
as n→ ∞. Recall that κα, φα,n, and Nα are defined respectively by (2.1), (2.6), and (2.4).

Proof of Theorem 2.2. Let n ≥ Nα. If λ < 0, we use the change of variable λ = g−(x) with
x ∈ (0,∞), and obtain (3.5). Then, Dα,n(g−(x)) = 0 takes the form qα,n(2 cosh(x/2)) = 0,
i.e.,

tanh
nx

2
= κα tanh

x

2
. (5.1)

By Theorem 2.1, there is a unique solution in (0,∞) of (5.1), namely sα,n. Dividing both
sides of (5.1) by κα and applying arctanh, we rewrite this equation in the form (2.8). The
second part of Theorem 2.2 is proved in the beginning of Section 4.

The main advantage of equation (5.1) is that φα,n is a “very slow function” for big
values of n. A straightforward computation yields

φ′
α,n(x) =

nκα(
κ2
α − tanh2 nx

2

)
cosh2 nx

2

=
nα(α− 1)

α2 + (1− 2α) cosh2 nx
2

, (5.2)

φ′′
α,n(x) = −n

2α(α− 1)(1− 2α) cosh nx
2 sinh nx

2(
α2 + (1− 2α) cosh2 nx

2

)2 . (5.3)

14



Recall that Ωα and ωα are defined by (2.2) and (2.7). Define

ℓα,n :=
2

n
arccosh

√
nα(α− 1)− α2

1− 2α
.

Proposition 5.1. Let n ≥ Nα. Then φα,n has the following properties.

1. φα,n is strictly increasing and strictly concave.

2. φ′
α,n(ℓα,n) = 1; moreover, φ′

α,n > 1 on [0, ℓα,n) and φ
′
α,n < 1 on (ℓα,n,+∞).

3. limx→+∞ φα,n(x) = ωα.

4. sα,n is the unique fixed point of φα,n on (0,+∞).

5. φα,n(x) > x for every x in (0, ℓα,n].

6. ℓα,n < sα,n.

Proof. Properties 1 and 2 follow from (2.6), (5.2), and (5.3). The limit in 3 is easy to com-
pute taking into account that tanh(ωα/2) = κ−1

α . Property 4 follows from Theorem 2.2.
To prove 5, we apply the mean value theorem to φα,n on the segment [0, x], taking into

account property 2.
Let us prove 6. Due to property 5, we have that φα,n(x) > x for every x in (0, ℓα,n].

Hence, the fixed point of φα,n cannot belong to (0, ℓα,n]. On the other hand, the function
x 7→ x − φα,n(x) is continuous and changes its sign on [ℓα,n,+∞). Therefore, φα,n has a
fixed point on (ℓα,n,+∞).

Figure 5 shows φα,n together with the identity function.

Theorem 5.2. Let n ≥ Nα. Then φα,n is a contraction on [φα,n(ℓα,n), ωα].

Proof. As we have already mentioned in Proposition 5.1, φα,n strictly increases, and φ′
α,n

strictly decreases. Moreover, by property 5 from Proposition 5.1, ℓα,n < φα,n(ℓα,n). There-
fore, for every x in [φα,n(ℓα,n), ωα],

φα,n(ℓα,n) < φα,n(φα,n(ℓα,n)) ≤ φα,n(x) < ωα,

and
0 < φ′

α,n(x) ≤ φ′
α,n(φα,n(ℓα,n)) < φ′

α,n(ℓα,n) = 1.

So, φα,n([φα,n(ℓα,n), ωα]) ⊆ [φα,n(ℓα,n), ωα], and φ
′
α,n(φα,n(ℓα,n)) is a Lipschitz coefficient

for φα,n on [φα,n(ℓα,n), ωα].

For every n ≥ Nα, we define fα,n : [0,+∞) → R by

fα,n(x) := x− φα,n(x).

Figure 6 shows fα,n.

15



ωα

sα,n

sα,n

ℓα,n

0
ωα

Figure 5: Plot of φα,n (blue), tangent line to the graph of φα,n at ℓα,n (purple), and plot
of x 7→ x (green), for α = −1/2 and n = 6.

sα,nℓα,n

0
ωα

Figure 6: Plot of fα,n (blue) and tangent line to the graph of fα,n at ℓα,n (purple), for
α = −1/2 and n = 6.

Proposition 5.3. Let n ≥ Nα. Then fα,n has the following properties.

1. f ′′α,n > 0 on [0,+∞), and fα,n is strictly convex.

2. f ′α,n is strictly negative on [0, ℓα,n) and strictly positive on (ℓα,n,+∞).

3. limx→∞ fα,n(x) = +∞.

4. sα,n is the only root of fα,n in (0,+∞).

5. fα,n is strictly negative on (0, sα,n) and strictly positive on (sα,n,+∞).

Proof. Properties 1–4 follow from Proposition 5.1. To prove property 5, we also apply the
intermediate value theorem.
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Theorem 5.4 (convergence of Newton’s method applied to fα,n). Let n ≥ Nα. Then the

sequence defined (y
(m)
α,n )∞m=0 by

y(0)α,n := ωα, y(m)
α,n := y(m−1)

α,n −
fα,n

(
y
(m−1)
α,n

)
f ′α,n

(
y
(m−1)
α,n

) (m ≥ 1),

takes values in [sα,n, ωα] and converges to sα,n.

Proof. Theorem 2.1 and Proposition 5.1 yield ℓα,n < sα,n < ωα. By Proposition 5.3,
f ′α,n > 0 and f ′′α,n > 0 on [sα,n, ωα]. The conclusion now follows from Proposition 4.3.

The convergence in Theorem 5.4 is at least linear convergence, but it becomes quadratic
after a finite number of steps.

Proposition 5.5. The sequence (sα,n)n≥Nα is strictly increasing: if n > m ≥ Nα, then
sα,n > sα,m.

Proof. It follows directly from (2.5) that φα,m(x) strictly increases with respect to m.
Thereby, for n > m ≥ Nα and for every x > 0,

fα,n(x) < fα,m(x).

In particular,
fα,n(sα,m) < fα,m(sα,m) = 0.

Property 5 from Proposition 5.3 implies that sα,n > sα,m.

Corollary 5.6. For every n ≥ Nα, sα,n > ℓα,Nα.

Proof. Indeed, sα,n > sα,Nα > ℓα,Nα by property 6 from Proposition 5.1 and Propos-
tion 5.5.

Proposition 5.7. If n ≥ Nα, then

0 ≤ ωα − sα,n ≤ C4(α)e
−nωα , (5.4)

where

C4(α) :=
4 cosh2 ωα

2

κα
exp

(
4 cosh2 ωα

2

e ℓα,Nακα

)
=

4κα

(κ2
α − 1)

exp

(
4κα

e (κ2
α − 1)ℓα,Nα

)
.

Proof. By the mean value theorem applied to tanh(x/2) on [sα,n, ωα], there exists ξ in
(sα,n, ωα) such that

tanh
ωα

2
− tanh

sα,n
2

=
1

2 cosh2 ξ
2

(ωα − sα,n).
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Notice that cosh(ξ/2) < cosh(ωα/2). Hence, we can estimate ωα − sα,n from above:

ωα − sα,n ≤ 2 cosh2
ωα

2

(
tanh

ωα

2
− tanh

sα,n
2

)
.

Since sα,n satisfies (5.1) and tanh(ωα/2) = κ−1
α ,

ωα − sα,n ≤ 2 cosh2 ωα
2

κα

(
1− tanh

nsα,n
2

)
≤ 4 cosh2 ωα

2

κα
e−nsα,n . (5.5)

By Corollary 5.6, e−nsα,n < e−nℓα,Nα . We also have the elementary inequality xe−x ≤ 1/e
for every x > 0. By these inequalities and (5.5),

n(ωα − sα,n) ≤
4 cosh2 ωα

2

κα
ne−nℓα,Nα =

4 cosh2 ωα
2

ℓα,Nακα
nℓα,Nαe

−nℓα,Nα ≤ 4 cosh2 ωα
2

e ℓα,Nακα
.

Now we combine this inequality with (5.5):

ωα − sα,n ≤ 4 cosh2 ωα
2

κα
e−n(ωα−sα,n)e−nωα ≤ 4 cosh2 ωα

2

κα
exp

(
4 cosh2 ωα

2

e ℓα,Nακα

)
e−nωα .

Define

γ1,α :=
4κα

κ2
α − 1

, γ2,α :=
4κα(κ2

α + 1)

(κ2
α − 1)2

. (5.6)

Lemma 5.8 (asymptotic expansion of φα,1). As t tends to infinity,

φα,1(t) = ωα − γ1,αe
−t + γ2,αe

−2t +O(e−3t). (5.7)

Proof. Since tanh(t/2) = (1− e−t)/(1 + e−t),

φα,1(t) = ψ(e−t), where ψ(u) := arctanh

(
κ−1
α

1− u

1 + u

)
.

We start with the Taylor–Maclaurin expansion of the rational function u 7→ (1−u)/(1+u)
around 0:

1− u

1 + u
= 1− 2u

1 + u
= 1− 2u+ 2u2 +O(u3).

Then, we apply the Taylor expansion of arctanh around κ−1
α :

arctanh(κ−1
α + y) = arctanh(κ−1

α ) +
y

1− κ−2
α

+
κ−1
α y2

(1− κ−2
α )2

+O(y3).
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In the last expansion we substitute y = 2κ−1
α (−u + u2 + O(u3)) and use the relation

O(y) = O(u):

ψ(u) = 2 arctanh
(
κ−1
α + 2κ−1

α (−u+ u2 +O(u3))
)

= 2arctanh(κ−1
α ) +

4κ−1
α

1− κ−2
α

(
−u+ u2 +O(u3)

)
+

8κ−3
α

(1− κ−2
α )2

(
−u+ u2 +O(u3)

)2
+O(u3).

Simplifying and taking into account that tanh(ωα/2) = κ−1
α , we obtain the Taylor–

Maclaurin expansion of ψ around 0:

ψ(u) = ωα − γ1,αu+ γ2,αu
2 +O(u3).

Finally, we put u = e−t and obtain (5.7).

Theorem 5.9 (asymptotic expansion of sα,n). As n tends to infinity,

sα,n = ωα − γ1,αe
−nωα − γ21,αne

−2nωα + γ2,αe
−2nωα +O(n2e−3nωα). (5.8)

Proof. By formula (5.4) from Proposition 5.7, we have an asymptotic expansion of sα,n
with one exact term:

sα,n = ωα +O(e−nωα). (5.9)

Therefore,

e−nsα,n = e−nωα+O(ne−nωα ) = e−nωα(1 +O(ne−nωα)) = e−nωα +O(ne−2nωα). (5.10)

This also implies a rough upper bound for e−nsα,n :

e−nsα,n = O(e−nωα). (5.11)

The main idea of the following proof is to combine (5.9) with (2.8) and Lemma 5.8. We
apply the asymptotic expansion (5.7) with two exact terms and with nsα,n instead of t:

sα,n = φα,n(sα,n) = φα,1(nsα,n) = ωα − γ1,αe
−nsα,n +O(e−2nsα,n).

We simplify this expression using (5.10) and (5.11):

sα,n = ωα − γ1,αe
−nωα +O(ne−2nωα) +O(e−2nωα)

= ωα − γ1,αe
−nωα +O(ne−2nωα).

Now, we use this expansion to improve (5.10):

e−nsα,n = e−nωαeγ1,αne
−nωα+O(n2e−2nωα )

= e−nωα
(
1 + γ1,αne

−2nωα +O(n2e−2nωα)
)

= e−nωα + γ1,αne
−2nωα +O(n2e−3nωα).
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Next, we combine this expansion with (5.7):

sα,n = φα,n(sα,n) = φα,1(nsα,n) = ωα − γ1,αe
−nsα,n + γ2,αe

−2nsα,n +O(e−3nsα,n)

= ωα − γ1,α
(
e−nωα + γ1,αne

−2nωα +O(n2e−3nωα)
)

+ γ2,α
(
e−nωα + γ1,αne

−2nωα +O(n2e−3nωα)
)2

+O(e−3nωα).

Simplifying this expression we get (5.8).

Remark 5.10. For n large enough, Theorem 5.9 provides a more precise localization of
sα,n than in Theorem 5.2 and Proposition 5.7. Namely, there exists Mα such that for
n ≥Mα,

ωα − γ1,αe
−nωα − γ21,αne

−2nωα < sα,n < ωα.

Proof of Theorem 2.4. We expand g− by Taylor formula around ωα:

g−(ωα + x) = g−(ωα) + g′−(ωα)x+
g′′−(ωα)

2
x2 +O(x3).

Then we substitute the expansion (5.8) of sα,n:

λα,n,1 = g−(sα,n)

= g−
(
ωα − γ1,αe

−nωα − γ21,αne
−2nωα + γ2,αe

−2nωα +O(n2e−3nωα)
)

= g−(ωα) + g′−(ωα)
(
−γ1,αe−nωα − γ21,αne

−2nωα + γ2,αe
−2nωα +O(n2e−3nωα)

)
+
g′′(ωα)

2

(
−γ1,αe−nωα − γ21,αne

−2nωα + γ2,αe
−2nωα +O(n2e−3nωα)

)2
+O(e−3nωα)

= g−(ωα)− γ1,αg
′
−(ωα)e

−nωα − γ21,αg
′
−(ωα)ne

−2nωα

+

(
γα,2g

′
−(ωα) +

γ21,αg
′′
−(ωα)

2

)
e−2nωα +O

(
n2e−3nωα

)
.

Recall that g−(ωα) = Ωα. Hence we obtain (2.14) and (2.15), with the following coeffi-
cients:

βα,1 = −g′−(ωα)γ1,α, βα,2 = −g′−(ωα)γ
2
1,α, βα,3 = −g′−(ωα)γα,2 −

1

2
g′′−(ωα)γ

2
1,α.

Calculate the derivatives of g− at ωα:

g′−(ωα) = −2 sinh(ωα) =
4α(1− α)

1− 2α
= − 4κα

κ2
α − 1

,

g′′−(ωα) = −2 cosh(ωα) = −2(2α2 − 2α+ 1)

1− 2α
= −2(κ2

α + 1)

κ2
α − 1

.

Combining with formulas (5.6), we write βα,1, βα,2, and βα,3 as (2.12) or (2.13).
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6 Eigenvectors

We recall that λα,n,j = λRe(α),n,j . Nevertheless, it turns out that if Im(α) ̸= 0, then the
eigenvectors associated to Lα,n have complex components. So, in this section we suppose
that α belongs to C and Re(α) < 0. To simplify subindices, we put

κα := κRe(α), Nα := NRe(α), ωα := ωRe(α), Ωα := ΩRe(α),

ηα := ηRe(α), zα,n,j := zRe(α),n,j , sα,n := sRe(α),n.

Proof of Theorem 2.5. Formulas (2.17), (2.16) are consequences of [11, Proposition 8].

Recall that να is defined by (2.18). For every x ∈ [0, π], we define

ξα(x) :=
|1− α|2

2
g(x) cos(ηα(x)) +

|α|2
2
g(ηα(x)) cos(x)

+
Re(α)− |α|2

2
(g(x) + g(x+ ηα(x))− g(ηα(x)))− 2|α|2 cos(x).

Proposition 6.1 (exact formulas for the inner eigenvectors). Let n ≥ 3 and 3 ≤ j ≤ n.
If j is odd, then ∥vα,n,j∥2 is given by (2.20). If j is even, then

∥vα,n,j∥22 = nνα(zα,n,j) +
sin(ηα(zα,n,j))

sin(zα,n,j)
ξα(zα,n,j). (6.1)

Proof. These formulas are similar to [11, (66), (69)] and are proved in the same manner.

In this section, we use several identities for hyperbolic functions:

sinh(x)± sinh(y) = 2 sinh
x± y

2
cosh

x∓ y

2
, (6.2)

2 cosh(x) cosh(y) = cosh(x− y) + cosh(x+ y), (6.3)

2 cosh2(x) = 1 + cosh(2x), (6.4)
n∑

k=1

cosh(2kx+ y) =
sinh(nx) cosh((n+ 1)x+ y)

sinh(x)
. (6.5)

Define

u1,α,n := −λα,n,1
2

(
n+

sinh(2nsα,n)

2 sinh(sα,n)

)
, (6.6)

u2,α,n := 2|α|2 sinh2 (n− 1)sα,n
2

(
n+

sinh(nsα,n)

sinh(sα,n)

)
, (6.7)

u3,α,n := 4Re(α) sinh
(n− 1)sα,n

2
cosh

nsα,n
2

sinh
sα,n
2

(
n+

sinh(nsα,n)

sinh(sα,n)

)
. (6.8)
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Proposition 6.2 (exact formula for the norm of the first eigenvector). Let n ≥ Nα. Then

∥vα,n,1∥22 = u1,α,n + u2,α,n + u3,α,n. (6.9)

Proof. We transform (2.17) using (6.2):

vα,n,1,k = 2 sinh
sα,n
2

cosh
(2k − 1)sα,n

2
+ 2α sinh

(n− 1)sα,n
2

cosh
(n+ 1− 2k)sα,n

2
.

Then,

|vα,n,1,k|2 = 4 sinh2
sα,n
2

cosh2
(2k − 1)sα,n

2

+ 4|α|2 sinh2 (n− 1)sα,n
2

cosh2
(n+ 1− 2k)sα,n

2

+ 8Re(α) sinh
sα,n
2

sinh
(n− 1)sα,n

2
cosh

(2k − 1)sα,n
2

cosh
(n+ 1− 2k)sα,n

2
.

Applying (6.3) and (6.4), we simplify some products or squares containing ksα,n:

|vα,n,1,k|2 = −λα,n,1
2

(
1 + cosh(2ksα,n − sα,n)

)
+ 2|α|2 sinh2 (n− 1)sα,n

2

(
1 + cosh(2ksα,n − (n+ 1)sα,n)

)
+ 4Re(α) sinh

(n− 1)sα,n
2

sinh
sα,n
2

×

×
(
cosh

nsα,n
2

+ cosh

(
2ksα,n − (n+ 2)

2
sα,n

))
.

Finally, we sum over k, use (6.5), and obtain (6.9).

Lemma 6.3. As n tends to infinity, expressions (6.6), (6.7), and (6.8) have the following
asymptotic behavior:

u1,α,n = − Ωα

8 sinh(ωα)
e2nωα +O(nenωα), (6.10)

u2,α,n =
|α|2e−ωα

4 sinh(ωα)
e2nωα +O(nenωα), (6.11)

u3,α,n =
Ωα

8 sinh(ωα)
e2nωα +O(nenωα). (6.12)

Proof. We are going to prove (6.10); the proofs of (6.11) and (6.12) are similar. As n→ ∞,
by Theorem 2.4,

λα,n,1 = Ωα +O(e−nωα). (6.13)
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By (5.9),

e2nsα,n = exp(2nωα +O(ne−nωα)) = e2nωα(1 +O(ne−nωα)) = e2nωα +O(nenωα),

1

sinh(sα,n)
=

1

sinh(ωα)
+O(e−nωα).

Therefore

n+
sinh(2nsα,n)

2 sinh(sα,n)
=

1

4 sinh(ωα)
e2nωα +O(nenωα). (6.14)

We conclude the proof by substituting (6.13) and (6.14) into (6.6).

Proof of Theorem 2.6. Formula (2.21) follows from the exact formula (6.9), using the ap-
proximation (4.7), similarly to [11, (19)]. To prove (2.22), we apply Proposition 6.2 and
Lemma 6.3. The principal terms in the expansions (6.10) and (6.12) mutually annihilate,
and

∥vα,n,1∥22 =
|α|2e−ωα

4 sinh(ωα)
e2nωα +O(nenωα).

By substituting ωα = log(1 − 2Re(α)), we transform the coefficient into µ2α, where µα is
defined by (2.19). Finally, we take the square root and obtain (2.22).

For n ≥ Nα and j = 1, we define

wα,n,1(x) := sinh(xsα,n)− (1− α) sinh((x− 1)sα,n) + α sinh((n− x)sα,n). (6.15)

For all other values of n and j,

wα,n,j(x) := sin(xzα,n,j)− (1− α) sin((x− 1)zα,n,j) + α sin((n− x)zα,n,j). (6.16)

We notice that (6.16) can be written as

wα,n,j(x) = Aα,n,j sin(zα,n,jx+Bα,n,j),

for some coefficients Aα,n,j and Bα,n,j . Therefore, for α < 0 (here we suppose that α is
real), wα,n,j changes its sign approximately j − 1 times on [0, π].

Figure 7 shows the behavior of the formula for the eigenvectors (2.16). Notice that√
να(dn,j) is an approximation of the quadratic mean of |vα,n,j,k|, 1 ≤ k ≤ n.
Figure 8 shows wα,n,1 defined by (6.15) and the components of vα,n,1. We observe that

the extreme components of the vector vα,n,1 are much bigger (in the absolute value) than
their central components.
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Figure 7: Plots of wα,n,j (green) and points (k, vα,n,j,k) (blue), for α = −1/2, n = 16, and
j = 4, 8.

1 16

µαenωα√
n

0

Figure 8: Plot of wα,n,1 (green) and points (k, vα,n,1,k) (blue), for α = −1/2 and n = 16.

7 Numerical experiments

With the help of Sagemath [17], we have verified numerically (for many values of
parameters) the representations (3.2), (3.4), (3.5), for the characteristic polynomial, exact
formulas (2.20), (6.1), (6.9) for the norms of the eigenvectors, and many other exact
formulas appearing in this paper.

We introduce the following notation for different approximations of the eigenvalues and
eigenvectors. All computations are performed with 3322 binary digits (≈ 1000 decimal
digits).

• λgenα,n,j are the eigenvalues computed in Sagemath by its general algorithms. The
multi-precision arithmetic versions of these algorithms are recently added to Sage-
math, and they are not very accurate.

• zNα,n,j is the numerical solution of the equation hα,n,j(x) = 0 computed by Newton’s
method, see Theorem 4.4.
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• Similarly, sNα,n is the solution of fα,n(x) = 0 computed by Newton’s method, see
Theorem 5.4.

• λNα,n,j is computed as g(zNα,n,j) or g(dn,j) or g−(s
N
α,n), depending on the case.

• λbisecα,n,j is similar to λNα,n,j , but now we solve the corresponding equations by the
bisection method.

• λfpα,n,j is similar to λNα,n,j , but now we solve the corresponding equations by the fixed
point method.

• Using zNα,n,j we compute vα,n,j by (2.16) and normalize it.

• Using sNα,n we compute vα,n,1 by (2.17) and normalize it.

• λasympt
α,n,j is the approximation given by (2.10) and (2.14).

We have constructed a large series of examples including all rational values α in [−3, 0)
with denominators ≤ 3 and all n with Nα ≤ n ≤ 256. In all these examples, we have
obtained

max
1≤j≤n

∥Lα,nvα,n,j − λNα,n,jvα,n,j∥2 < 10−996, max
1≤j≤n

|λgenα,n,j − λNα,n,j | < 10−792,

max
1≤j≤n

|λNα,n,j − λbisecα,n,j | < 10−998, max
1≤j≤n

|λfpα,n,j − λNα,n,j | < 10−998.

For testing the asymptotic formulas, we have computed the errors

Rasympt
α,n,j := λasympt

α,n,j − λNα,n,j

and their maximums ∥Rasympt
α,n ∥∞ = max1≤j≤n |Rasympt

α,n,j |. Table 1 shows that these errors

indeed can be bounded by Oα(1/n
3).

We have done similar tests for many other values of α and n. Numerical experiments
show that n3∥Rasympt

α,n ∥∞ are bounded by some numbers depending on α.
Since |Rasympt

α,n,j | is much smaller for the outlier eigenvalue (j = 1), we show in Table 2

some numerical experiments for this case only. We observe that |Rasympt
α,n,1 | is bigger for

bigger values of |Re(α)|.
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